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Abstract
The purpose of this paper is to show that finitely many relativistic point
interactions may be approximated in the strong resolvent sense by sequences of
operators with smooth potentials. We consider the entire family of relativistic
point interactions, and determine those for which renormalization of the
coupling constant occurs when the corresponding potentials are approximated
by finitely many local, short-range perturbations of the free Dirac operator.

PACS numbers: 02.30.Tb, 03.65.Db, 03.65.Pm, 63.10.+a

1. Introduction

The study of point interactions has a venerable history, beginning with the work of Kronig and
Penney [12], and supported by a vast literature that illustrates the wide range of applications
and fundamental importance of this concept for physics and mathematics (cf [1, 5–7, 13, 16]
for a variety of results in the nonrelativistic case).

Relativistic point interactions (cf [4]) and, more generally, finite-rank singular
perturbations of nonsemibounded self-adjoint operators, have been the focus of considerable
recent attention. Results on approximation by sequences of operators with regular
perturbations have been obtained by Albeverio and Kurasov [2], Albeverio, Koshmanenko,
Kurasov, and Nizhnik [3], Koshmanenko [11], and Hughes [8, 9], where renormalization
questions are also addressed. In [8], we determined those relativistic point interactions for
which renormalization of the coupling constant occurs when the corresponding potentials are
approximated by local, short-range perturbations of the free Dirac operator in one dimension.
In addition, we found a formula for the renormalization constant for the entire four-parameter
family of relativistic point interactions. The purpose of this paper is to extend those results to
the case of finitely many relativistic point interactions, including combinations different point
interactions at distinct centres.

As in [4], our development begins with consideration of the self-adjoint Dirac operator

D0 = −ic
d

dx
⊗ σ1 +

c2

2
⊗ σ3
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with domain

Dom(D0) = H 1(R) ⊗ C2,

where

σ1 =
(

0 1
1 0

)
, σ3 =

(
1 0
0 −1

)
are the Pauli matrices. The relevant operator in terms of point interactions is obtained by
defining the symmetric operator Ĥ = D0 restricted to

Dom(Ĥ ) = {ψ ∈ H 1(R) ⊗ C2|ψ(0) = 0}.
Ĥ has deficiency indices (2, 2), and yields a four-parameter family of self-adjoint extensions.
The self-adjoint extensions of interest are those that satisfy the boundary conditions ψ(0+) =
�ψ(0−), where

� = ω

(
α iβ

−iγ δ

)
,

ω ∈ C, |ω| = 1 and α, β, γ, δ ∈ R satisfy αδ−βγ = 1, (cf [4]). These extensions correspond
to point-interactions concentrated at the point x = 0 that link the intervals (−∞, 0) and
(0,∞).

Examples. There are several one-parameter sub-classes of these operators that have received
a great deal of attention in the literature:

�1 =
(

cos θ −i sin θ

−i sin θ cos θ

)
, �2 =

(
cosh θ −i sinh θ

i sinh θ cosh θ

)

�3 =
(

1 0
−iα
c

1

)
, �4 =

(
1 iβc

0 1

)
.

These correspond to the electrostatic and Lorentz scalar point interactions and the relativistic
δ- and δ′-potentials (cf [9, p 429]), respectively.

In [9, theorem 1], it is shown that the class of extensions of Ĥ , which are denoted H�,
has the following closed-form expression:

H� = e−H(x)⊗A∗
(

−ic
d

dx
⊗ σ1

)
e−H(x)⊗A +

c2

2
⊗ σ3,

on

D(H�) = {ψ ∈ L2(R) ⊗ C2 | e−H(x)⊗Aψ ∈ H 1(R) ⊗ C2},
where A is a 2 × 2 complex matrix for which eA = �, and H(x) is the Heaviside function.
We will now consider an example associated with �3, to demonstrate that H� is a formal
perturbation of D0.

It is well known in the literature (cf [4, p 162], [8, example 3]) that

�3 =
(

1 0
−iα
c

1

)
corresponds to the relativistic δ-potential interaction. Power series methods yield

ln(�3) = �3 − I =
(

0 0
−iα
c

0

)
= A3,

which we note is nilpotent. Therefore, by the functional calculus, �3 = eA3 . In addition,

A∗
3 =

(
0 iα

c

0 0

)
.
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Therefore, in the case of H�3 , we see that

e−H(x)⊗A3 = exp

[
iα

c
H(x) ⊗

(
0 0
1 0

)]
,

and

e−H(x)⊗A∗
3 = exp

[−iα

c
H(x) ⊗

(
0 1
0 0

)]
.

Let ψ = (ψ1, ψ2) ∈ D(H�3). It is shown in [8, lemma 1] (also, cf [2]), that in the sense of
distributions,

H�3ψ =
(

−ic
d

dx
⊗ σ1 +

c2

2
⊗ σ3

)
ψ + ic

(
ψ2(0+) − ψ2(0−) 0

0 ψ1(0+) − ψ1(0−)

)
�δ,

where �δ is a linear map from H 1(R) ⊗ C2 into C2 defined by

(�δ, f ) =
(

f1(0)

f2(0)

)
,

for f = (f1, f2) ∈ H 1(R)⊗C2. Making use of the boundary conditions, ψ(0+) = �3ψ(0−),
we obtain

H�3ψ =
(

−ic
d

dx
⊗ σ1 +

c2

2
⊗ σ3

)
ψ + α ⊗

(
1 0
0 0

)
�δψ

= D0ψ + α ⊗
(

1 0
0 0

)
�δψ.

2. The main results

We will now extend the results in [8] to the case of finitely many centres. In this case Ĥ = D0,
restricted to

Dom(Ĥ ) = {ψ ∈ H 1(R) ⊗ C2 | ψ(xi) = 0, for i = 1, . . . , k},
where {xi}ki=1 ⊂ R. The deficiency indices of Ĥ are (2k, 2k), and we consider self-adjoint
extensions H�, where � = {�i}ki=1 and

�i = ωi

(
αi iβi

−iγi δi

)
, (1)

ωi ∈ C, |ωi | = 1 and αi, βi, γi, δi ∈ R satisfy αiδi − βiγi = 1, for all i = 1, . . . , k. Let

Dom(H�) = {
ψ ∈ H 1

(
R − {xi}ki=1

) ⊗ C2|ψ(
x+

i

) = �iψ(x−
i )

}
,

and define H�ψ = D0ψ for ψ ∈ Dom(H�). We will write � for {�i}ki=1.
We now develop a closed-form expression for H�, as was done in the one-centre case.

Let f (z) = ln(z) be a branch of the logarithm on a domain S ⊂ C, so S does not contain
the origin. We note that for all i = 1, . . . , k,�i , considered as an operator on C2, has finite
spectrum σ(�i) that does not contain 0. Then f (�i) = ln(�i) is defined for each i by the
Riesz functional calculus [10, 14]. Let Ai = ln(�i). Since g(z) = ez is entire, the functional
calculus also yields eAi = �i .

Define Hi(x) = H(xi − x), the translated Heaviside, rotated about the line x = xi , and
consider the operator

∑k
i=1 Hi(x) ⊗ Ai ∈ B(L2(R) ⊗ C2). Again, by the Riesz functional

calculus, e
∑k

i=1 Hi(x)⊗Ai ∈ B(L2(R) ⊗ C2). We now give the closed-form expression of H�.
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Theorem 1. Suppose that the matrices {Ai}ki=1 commute pairwise. Let

Dom(T ) = {
ψ ∈ L2(R) ⊗ C2

∣∣ e(− ∑k
i=1 Hi(x)⊗Ai)ψ ∈ H 1(R) ⊗ C2

}
,

and define

T ψ = e(− ∑k
i=1 Hi(x)⊗A∗

i )

(
−ic

d

dx
⊗ σ1

)
e(− ∑k

i=1 Hi(x)⊗Ai)ψ +
c2

2
⊗ σ3ψ

for ψ ∈ Dom(T ). Then T = H�.

Proof. We note that T is self-adjoint, so it suffices to prove that H� ⊂ T . Let ψ ∈ D(H�).
Then ψ ∈ H 1

(
R−{xi}ki=1

)⊗C2 ⊂ L2(R)⊗C2. Now, for each j � k, since the Aj commute,

e(− ∑k
i=1 Hi(x

+
j )⊗Ai)ψ

(
x+

j

) = e(− ∑j

i=1 1⊗Ai)�jψ(x−
j )

= e(− ∑j

i=1 1⊗Ai) eAj ψ(x−
j )

= e(− ∑j

i=1 1⊗Ai)+(1⊗Aj )ψ(x−
j )

= e(− ∑j−1
i=1 1⊗Ai)ψ(x−

j ),

where one is the function f (x) ≡ 1. Also

e(− ∑k
i=1 Hi(x

−
j )⊗Ai)ψ(x−

j ) = e(− ∑j−1
i=1 1⊗Ai)ψ(x−

j ).

Therefore e(− ∑k
i=1 Hi(x

+
j )⊗Ai)ψ(x+

j ) = e(− ∑k
i=1 Hi(x

−
j )⊗Ai)ψ(x−

j ), so that e(− ∑k
i=1 Hi(x)⊗Ai)ψ(x)

is continuous at xj . Since e(− ∑k
i=1 Hi(x)⊗Ai)ψ(x) is continuous at xj , and e(− ∑k

i=1 Hi⊗Ai)ψ ∈
H 1

(
R − {xi}ki=1

) ⊗ C2, e(− ∑k
i=1 Hi⊗Ai)ψ ∈ H 1(R) ⊗ C2. Hence ψ ∈ Dom(T ).

To show that H�ψ = T ψ for ψ ∈ Dom(H�), let ψ ∈ Dom(H�). Then
e(− ∑k

i=1 Hi(x)⊗Ai)ψ ∈ H 1(R) ⊗ C2. In [8, theorem 1], we proved that

e(− ∑k
i=1 Hi(x)⊗A∗

i )σ1 e(− ∑k
i=1 Hi(x)⊗Ai) = σ1,

from which it follows that for almost every x:

e(− ∑k
i=1 Hi(x)⊗A∗

i )

(
−ic

d

dx
⊗ σ1

)
e(− ∑k

i=1 Hi(x)⊗Ai)ψ(x) =
(

−ic
d

dx
⊗ σ1

)
ψ(x).

So H� = T . �

We now consider the problem of smooth approximation in the case of finitely many centres.
Let Hi,n(x) = ∫ x

−∞ hi,n(y) dy with hi,n absolutely continuous, non-negative functions with

support in
(
xi, xi + 1

n

)
, such that

∫ ∞
−∞ hi,n(x) dx = 1 for each i, n. Let U = e− ∑k

i=1 Hi⊗Ai and
define Un analogously. Then

H�n = U ∗
n

(
−ic

d

dx
⊗ σ1

)
Un +

c2

2
⊗ σ3

= −ic
d

dx
⊗ σ1 +

c2

2
⊗ σ3 + ic

k∑
i=1

H ′
i,n(x) ⊗ σ1Ai

(cf [8, theorem 1]). We start with a theorem from which the approximation result will quickly
follow.

Theorem 2. Un → U and U−1
n → U−1, in the strong operator topology.
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Proof. Let ψ ∈ L2(R) ⊗ C2. We proceed with a dominated convergence argument. We have
that ∥∥e− ∑k

i=1 Hi,n⊗Ai ψ − e− ∑k
i=1 Hi⊗Ai ψ

∥∥2 =
∫ ∞

−∞
(fn(x), fn(x))C2 dx

where

fn(x) = e− ∑k
i=1 Hi,n(x)⊗Ai ψ(x) − e− ∑k

i=1 Hi(x)⊗Ai ψ(x).

Now, given x ∈ R − {x1, . . . , xk}, there exists an N such that, for all i, Hi,n(x) = Hi(x) for
all n � N . Thus (fn(x), fn(x))C2 = 0 for n � N so (fn(x), fn(x))C2 → 0 pointwise.

Also,

(fn(x), fn(x))C2 = ∥∥e− ∑k
i=1 Hi,n(x)⊗Ai ψ(x) − e− ∑k

i=1 Hi(x)⊗Ai ψ(x)
∥∥2

C2

�
∥∥e− ∑k

i=1 Hi,n(x)⊗Ai − e− ∑k
i=1 Hi(x)⊗Ai

∥∥2∥∥ψ(x)
∥∥2

C2

�
(∥∥e− ∑k

i=1 Hi,n(x)⊗Ai
∥∥ +

∥∥e− ∑k
i=1 Hi(x)⊗Ai

∥∥)2‖ψ(x)‖2
C2 .

Both
∥∥e− ∑k

i=1 Hi,n(x)⊗Ai

∥∥ and
∥∥e− ∑k

i=1 Hi(x)⊗Ai

∥∥ are bounded by a suitable constant K that is
independent of n. Thus we have (2K)2‖ψ(x)‖2

C2 as an L1(R) bound, and the result follows
from the dominated convergence theorem. The proof of the convergence of U−1

n to U−1 is
identical. �

This leads us to

Theorem 3. Let

H�n = U ∗
n

(
−ic

d

dx
⊗ σ1

)
Un +

c2

2
⊗ σ3,

with

D(H�n) = {ψ ∈ L2(R) ⊗ C2 | Unψ ∈ H 1(R) ⊗ C2} = H 1(R) ⊗ C2.

Then H�n converges to H� in the strong resolvent sense.

Proof. We will prove strong graph convergence, which is equivalent to strong resolvent
convergence. Let ψ ∈ D(H�). Then Uψ = φ ∈ H 1(R) ⊗ C2. So ψ = U−1φ. Let
ψn = U−1

n φ. Then Unψn = UnU
−1
n φ = φ. Thus ψn ∈ D(H�n), and by theorem 2,

‖ψn − ψ‖ = ∥∥U−1
n φ − U−1φ

∥∥ → 0. Moreover,

‖H�nψn − H�ψ‖ =
∥∥∥∥U ∗

n

(
−ic

d

dx
⊗ σ1

)
Unψn − U ∗

(
−ic

d

dx
⊗ σ1

)
Uψ

∥∥∥∥
=

∥∥∥∥U ∗
n

(
−ic

d

dx
⊗ σ1

)
φ − U ∗

(
−ic

d

dx
⊗ σ1

)
φ

∥∥∥∥ → 0

by theorem 2, since Un and U are unitary. So H�n → H� in the sense of strong graph
convergence, and consequently in the strong resolvent sense. �

Next, we consider the question of renormalization of the coupling constants when we
pass to the limit as n → ∞. In order to compare this to the result in [2], we first prove the
following; here �δi, i = 1, . . . , k is a linear map from H 1(R) ⊗ C2 into C2 defined by

(�δi, f ) =
(

f1(xi)

f2(xi)

)
,

for f = (f1, f2) ∈ H 1(R) ⊗ C2.
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Lemma 1. For ψ ∈ Dom(H�),

H�ψ =
(

−ic
d

dx
⊗ σ1 +

c2

2
⊗ σ3

)
ψ + ic

k∑
i=1

(
ψ2

(
x+

i

) − ψ2(x
−
i ) 0

0 ψ1
(
x+

i

) − ψ1(x
−
i )

)
�δi,

in the sense of distributions.

Proof. Let ψ ∈ Dom(H�). Then ψ = e(
∑k

i=1 Hi(x)⊗Ai)φ, for φ ∈ H 1(R) ⊗ C2, and

H�ψ = e(− ∑k
i=1 Hi(x)⊗A∗

i )

(
−ic

d

dx
⊗ σ1

)
φ +

c2

2
⊗ σ3ψ.

On the other hand, for ψ ∈ Dom(H�),(
−ic

d

dx
⊗ σ1

)
ψ =

(
−ic

(
d

dx

)
0

⊗ σ1

)
ψ

− ic
k∑

i=1

(
ψ2

(
x+

i

) − ψ2(x
−
i ) 0

0 ψ1
(
x+

i

) − ψ1(x
−
i )

)
�δi, (2)

where
(

d
dx

)
0 denotes the derivative away from the centres. Since ψ is absolutely continuous

away from the centres, the following holds for x outside any neighbourhood of {x1, . . . , xk}:(
−ic

(
d

dx

)
0

⊗ σ1

)
ψ(x) =

(
−ic

(
d

dx

)
0

⊗ σ1

)
e(

∑k
i=1 Hi(x)⊗Ai)φ(x)

= −icσ1 e(
∑k

i=1 Hi(x)⊗Ai)φ′(x)

= e(− ∑k
i=1 Hi(x)⊗A∗

i )

(
−ic

d

dx
⊗ σ1

)
φ(x)

= H�ψ(x) − c2

2
⊗ σ3ψ(x). (3)

Therefore, combining (2) and (3), we have

H�ψ =
(

−ic
d

dx
⊗ σ1 +

c2

2
⊗ σ3

)
ψ + ic

k∑
i=1

(
ψ2

(
x+

i

) − ψ2(x
−
i ) 0

0 ψ1
(
x+

i

) − ψ1(x
−
i )

)
�δi,

in the sense of distributions. �

Now, we consider the approach in [2], and set ψ(xi) = ψ(x+
i )+ψ(x−

i )

2 for ψ ∈ Dom(H�).
This formal step corresponds to extending the δi-functions to the domain of H�, which
contains functions which may be discontinuous at the centres. Using the boundary conditions
ψ

(
x+

i

) = �iψ(x−
i ), we obtain

(�i + I )
(
ψ

(
x+

i

) − ψ(x−
i )

) = (�i + I )
(
I − �i

−1
)
ψ

(
x+

i

)
= (

�i − �i
−1

)
ψ

(
x+

i

)
= 2(�i − I )ψ(xi),

since 2ψ(xi) = (
I − �i

−1
)
ψ

(
x+

i

)
. In the event �i + I is invertible, we have, from lemma 1,

that

H�ψ =
(

−ic
d

dx
⊗ σ1

)
ψ +

(
c2

2
⊗ σ3

)
ψ + 2ic

k∑
i=1

σ1
�i − I

�i + I
�δiψ

in the sense of distributions, for all ψ ∈ Dom(H�).
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Remark. For the class of � under consideration, namely those satisfying (1), �i + I need not
be invertible. A trivial example is provided by �i = −I . In the event �i + I is invertible, set
Vi = 2icσ1

�i−I

�i+I
. Then Vi is a self-adjoint matrix, and we have the following approximation

result:

Theorem 2 (cf [8, theorem 2]). Let �i, i = 1, . . . , k, be 2 × 2 complex-valued matrices
satisfying (1), and assume that �i + I is invertible. Also, let �i = exp(Ai), Vi = 2icσ1

�i−I

�i+I
,

and Hi,n → Hi . Then for ψ ∈ Dom(H�), there exists {ψn} ⊂ H 1(R)⊗C2 such that ψn → ψ

and H�nψn → H�ψ in L2(R) ⊗ C2, and for all φ ∈ L2(R) ⊗ C2,〈(
−ic

d

dx
⊗ σ1

)
ψ +

(
c2

2
⊗ σ3

)
ψ +

k∑
i=1

Vi
�δiψ, φ

〉

= lim
n→∞

〈(
−ic

d

dx
⊗ σ1 +

c2

2
⊗ σ3 + ic

k∑
i=1

H ′
i,n(x) ⊗ σ1Ai

)
ψn, φ

〉
.

The subject of approximation of relativistic delta potentials has been the source of some
confusion that has been clarified in several sources (cf [8, 9, 17]). In [9], we showed that
the closed-form definitions used here for H� result in straightforward limiting procedures in
which the question of renormalization does not arise. On the other hand, when we attempt to
formalize the finite-rank perturbations of the free Dirac operator in the way described above
(and in [2]), then there is in some instances renormalization when the limit is taken. In fact,
from theorems 1 and 2, we see easily that renormalization occurs in all cases except when
Ai = 2 eAi −I

eAi +I
, i = 1, . . . , k (assuming the inverses exist). In the following, we determine

precisely those cases for which this condition holds.

Proposition 1 (cf [8, proposition 1]). Let A be a 2 × 2 complex matrix for which eA + I is
invertible. Then

A = 2
eA − I

eA + I

if and only if one of the following holds:

(i) A is nilpotent, or
(ii) the non-zero eigenvalues of A are simple, nondegenerate and purely imaginary. If iy is

an eigenvalue of A, then y is a real solution of

y

2
= tan

y

2
.

We conclude by considering some concrete examples. Returning to the case of �3

discussed earlier, we have that for finitely many point interactions centred at {x1, . . . , xk},

H�3ψ =
(

−ic
d

dx
⊗ σ1

)
ψ +

(
c2

2
⊗ σ3

)
ψ +

k∑
i=1

αi ⊗
(

1 0
0 0

)
�δiψ

= lim
n→∞

(
−ic

d

dx
⊗ σ1 +

c2

2
⊗ σ3

)
ψ + ic

k∑
i=1

H ′
i,n(x) ⊗

(
1 0
0 0

)
ψ
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in the sense described in theorem 2. Consequently, there is in this case no renormalization.
On the other hand, in the case of �1 = exp(−iθi ⊗ σ1),

H�1ψ =
(

−ic
d

dx
⊗ σ1

)
ψ +

(
c2

2
⊗ σ3

)
ψ +

k∑
i=1

(
2c tan

θi

2
⊗ I

)
�δiψ

= lim
n→∞

(
−ic

d

dx
⊗ σ1 +

c2

2
⊗ σ3

)
ψ +

k∑
i=1

(cθiH
′
i,n(x) ⊗ I )ψ.

In this case, renormalization occurs in all cases except those for which θi

2 = tan θi

2 .
Finally, we note that we may have different point interactions at the distinct centres if, for
example, we have a combination of �1 and �5 = exp(−iθ ⊗ I ), so that the corresponding A

(A1 = −iθ ⊗ σ1, A5 = −iθ ⊗ I ) commute.
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